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Introduction: Although radioisotope production yields may be increased by elevating the 
irradiation current, the maximum allowable irradiation current is often dictated by the thermal 
performance of a target. This limitation is commonly observed for solid targets as these materials 
often demonstrate poor thermal conductivities and low melting points. As we are interested in 
improving the power rating of solid targets by optimizing the shape and location of the cooling 
channels, we have investigated the use of finite element analysis to model both heat transfer and 
turbulent flow.  Before cooling optimization can be performed however, we needed to first validate 
our initial model. Such an experimental validation is the focus of this work.  

Methods: For the purpose of validating the finite element model, we have 
designed a target plate with a simplistic geometry. In order to perform on-
line real-time temperature measurements, this target plate is equipped with 
a thermocouple that extends to the centre of the plate [upper right]. Target 
plates of both copper and zirconium were constructed. These materials 
were selected for their markedly different thermal properties: copper is an 
excellent thermal conductor with a thermal conductivity, k, of 401 Wm-1K-1 

(@ 300 K), while zirconium is a relatively poor thermal conductor with k 
equal to 22.6 Wm-1K-1 (@ 300 K). The target plate and thermocouple were 
mounted into the water/helium cooled target assembly [lower right]. 
Irradiations were performed with proton currents up to 80 µA (17.5 MeV) 
for the copper plate and 50 µA (15.5 MeV) for zirconium. Both the beam tuning1 and target 
positioning were optimized to maximize the temperature readout. In calculating the power on the 
target plate, we have assumed a 10 percent beam loss to the target nosepiece/helium cooling 
chamber. Several low current measurements were also obtained without helium cooling as this 
source of cooling is not yet incorporated into the finite element model. 

The 3D heat transfer and turbulent flow of the cooling water were modelled using the COMSOL 
Multiphysics® v. 3.5a. steady-state general heat transfer and k-ε turbulence models, respectively. 
Experimental input parameters to the model include the cooling water temperature, cooling water 
flow rate, target plate/cooling water channel geometry, and a sample proton beam profile obtained 
using radiochromic film2. The temperature dependent material properties (i.e. thermal conductivity, 
density, heat capacity, etc.) were defined using COMSOL’s built-in material library.  

One of the primary challenges in developing the model was to accurately define the convective 
heat transfer at the water/plate boundary. Although COMSOL has built-in heat transfer coefficients 
for various geometrical configurations, at present these coefficients are limited exclusively to air 
cooling applications. To this end, three user-defined strategies were employed for evaluating the 
convective heat transfer coefficient at the water/plate interface.  

                                                            
1 See WTTC13 abstract: J.S. Wilson et al., A Simple Target Modification to Allow for 3-D Beam Tuning 
2 Avila-Rodriguez et al., Appl. Radiat. Isot., 2009, 67: 2025  
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The cooling geometry under consideration consists of a single 
central-inlet water-cooling channel and two water-outlets, all of 
which are perpendicular to the target plate [upper right]. 
Although the Dittus-Boelter and Sieder-Tate heat transfer 
formalisms are used to describe turbulent forced convection 
within long straight pipes (which is not representative of our 
geometric configuration), these two strategies were 
nevertheless investigated as both formalisms have been 
previously implemented and recommended for targetry applications3,4,5. The third model employed 
for evaluating the heat transfer coefficient (selected for its geometric similarity to our configuration) 
was a method characterized by Chang et al. for turbulent submerged liquid jets6. In all three 
strategies the Reynolds number was calculated from the temperature dependent water properties, 
the hydraulic diameter of the inlet water-cooling channel and the inlet water velocity, while the 
Prandtl number was calculated from the temperature dependent water properties. COMSOL’s non-
linear, direct (UMFPACK) parametric segregated solver was employed to evaluate beam powers 
ranging from 50–1300 W.  

Results: Three models were employed for characterizing 
the heat transfer at the water/plate boundary. Although all 
three strategies give rise to heat transfer coefficients 
whose magnitude increases as the cooling-water flow 
rate increases, when comparing the model predictions 
with experimental data [graphs, right], the results of this 
work suggest that the heat transfer in our geometric 
configuration is best described by the method proposed 
by Chang et al6. The poor performance of the Dittus-
Boelter and Sieder-Tate correlations has been attributed 
to the underlying geometric assumptions of these 
models. 

Conclusion: The experimental measurements performed 
in this study have allowed us to select a convective heat 
transfer model which is capable of accurately predicting 
the target plate temperature for materials with widely 
varying thermal properties. Future finite element 
investigations will include the introduction of helium 
cooling and the optimization of the cooling channel 
geometry for the purpose of improving the solid target power rating.  
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3 Pavan et al., J. Radioanal. Nucl. Chem., 2003, 257: 203 
4 Avila-Rodriguez et al., Proceedings of the COMSOL Conference, 2007, 359. 
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6 Chang et al., Int. J. Heat Mass Transfer, 1995, 38: 833 
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